In this paper, we address the problem of estimating dense depth from a sequence of images using deep neural networks. Specifically, we employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an initial depth map. Parts of the point cloud, however, may be less accurate than others due to lack of common observations or small baseline-to-depth ratio. To further increase the triangulation accuracy, we introduce a depth-refinement network (DRN) that optimizes the initial depth map based on the image's contextual cues. In particular, the DRN contains an iterative refinement module (IRM) that improves the depth accuracy over iterations by refining the deep features. Lastly, the DRN also predicts the uncertainty in the refined depths, which is desirable in applications such as measurement selection for scene reconstruction. We show experimentally that our algorithm outperforms state-of-the-art approaches in terms of depth accuracy, and verify that our predicted uncertainty is highly correlated to the actual depth error.
翻译:在本文中,我们用深神经网络从一系列图像中估计密度深度的问题。 具体地说, 我们使用一个密集光流网络来计算通信,然后对点云进行三角以获得初始深度地图。 但是,点云的某些部分可能与其他部分相比,由于缺乏共同的观测或小型基线与深度比率,可能不够准确。 为了进一步提高三角精确度, 我们引入了一个深度改进网络( DRN ), 根据图像的背景提示优化初始深度地图。 特别是, DRN 包含一个迭代精化模块( IRM ), 通过精炼深度特征来提高迭代的深度准确性。 最后, DRN 也预测了精细深度的不确定性, 这在现场重建的测量选择等应用中是可取的。 我们实验性地显示,我们的算法在深度准确性方面优于最新技术, 并核实我们预测的不确定性与实际深度错误高度相关。