Rerandomization discards assignments with covariates unbalanced in the treatment and control groups to improve estimation and inference efficiency. However, the acceptance-rejection sampling method used in rerandomization is computationally inefficient. As a result, it is time-consuming for rerandomization to draw numerous independent assignments, which are necessary for performing Fisher randomization tests and constructing randomization-based confidence intervals. To address this problem, we propose a pair-switching rerandomization method to draw balanced assignments efficiently. We obtain the unbiasedness and variance reduction of the difference-in-means estimator and show that the Fisher randomization tests are valid under pair-switching rerandomization. Moreover, we propose an exact approach to invert Fisher randomization tests to confidence intervals, which is faster than the existing methods. In addition, our method is applicable to both non-sequentially and sequentially randomized experiments. We conduct comprehensive simulation studies to compare the finite-sample performance of the proposed method with that of classical rerandomization. Simulation results indicate that pair-switching rerandomization leads to comparable power of Fisher randomization tests and is 3--23 times faster than classical rerandomization. Finally, we apply the pair-switching rerandomization method to analyze two clinical trial datasets, both of which demonstrate the advantages of our method.


翻译:为了解决这一问题,我们建议了一种配对式重整方法,以便有效地分配平衡的任务。我们获得了手段上差异估测器的公正性和差异性减少,并表明在对口转换重新整顿中,Fisher随机化测试是有效的。此外,我们建议了一种精确的方法,将Fisher随机化测试转向信任间隔,这比现有方法要快得多。此外,我们的方法适用于非顺序随机化测试和按顺序随机化的实验。我们进行了全面的模拟研究,以比较我们拟议方法的有限抽样性能与典型重新整顿的测试。模拟结果显示,重新整顿-23的对口化测试在对对口转换重新整顿中是有效的。我们建议了一种精确的方法,将Fisher随机化测试转向信任间隔,这比现有方法要快。此外,我们建议了一种精确的方法适用于非顺序随机化测试和按顺序随机化的实验。我们进行了全面的模拟研究,以比较我们拟议方法的有限性抽样性表现与典型重新整顿化的绩效。模拟结果表明,重新整顿-23的随机化试验方法将使我们最后采用更快速的试算方法。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员