Scanner big data has potential to construct Consumer Price Index (CPI). This work utilizes the scanner data of supermarket retail sales, which are provided by China Ant Business Alliance (CAA), to construct the Scanner-data Food Consumer Price Index (S-FCPI) in China, and the index reliability is verified by other macro indicators, especially by China's CPI. And not only that, we build multiple machine learning models based on S-FCPI to quantitatively predict the CPI growth rate in months, and qualitatively predict those directions and levels. The prediction models achieve much better performance than the traditional time series models in existing research. This work paves the way to construct and predict price indexes through using scanner big data in China. S-FCPI can not only reflect the changes of goods prices in higher frequency and wider geographic dimension than CPI, but also provide a new perspective for monitoring macroeconomic operation, predicting inflation and understanding other economic issues, which is beneficial supplement to China's CPI.
翻译:扫描量大数据有潜力构建消费物价指数(CPI) 。 这项工作利用超市零售的扫描数据(由中国安特商业联盟提供),在中国建立扫描量数据食品消费物价指数(S-FIPI),而指数可靠性则由其他宏观指标,特别是中国消费物价指数(CPI)校验。 不仅如此,我们还根据S-FPI建立多种机器学习模型,以量化预测月消费物价指数增长率,并定性预测这些方向和水平。 预测模型比现有研究的传统时间序列模型取得更好的业绩。 这项工作为利用中国的扫描量大数据构建和预测价格指数铺平了道路。 S-FPI不仅能够反映比CPI更频繁和更广阔的地理层面的商品价格变化,而且还为监测宏观经济运作、预测通货膨胀和理解其他经济问题提供了新视角,这对中国消费物价指数是一种有益的补充。