\textit{Objective:} In this paper, we introduce Physics-Informed Fourier Networks for Electrical Properties Tomography (PIFON-EPT), a novel deep learning-based method that solves an inverse scattering problem based on noisy and/or incomplete magnetic resonance (MR) measurements. \textit{Methods:} We used two separate fully-connected neural networks, namely $B_1^{+}$ Net and EP Net, to solve the Helmholtz equation in order to learn a de-noised version of the input $B_1^{+}$ maps and estimate the object's EP. A random Fourier features mapping was embedded into $B_1^{+}$ Net, to learn the high-frequency details of $B_1^{+}$ more efficiently. The two neural networks were trained jointly by minimizing the combination of a physics-informed loss and a data mismatch loss via gradient descent. \textit{Results:} We performed several numerical experiments, showing that PIFON-EPT could provide physically consistent reconstructions of the EP and transmit field. Even when only $50\%$ of the noisy MR measurements were used as inputs, our method could still reconstruct the EP and transmit field with average error $2.49\%$, $4.09\%$ and $0.32\%$ for the relative permittivity, conductivity and $B_{1}^{+}$, respectively, over the entire volume of the phantom. The generalized version of PIFON-EPT that accounts for gradients of EP yielded accurate results at the interface between regions of different EP values without requiring any boundary conditions. \textit{Conclusion:} This work demonstrated the feasibility of PIFON-EPT, suggesting it could be an accurate and effective method for EP estimation. \textit{Significance:} PIFON-EPT can efficiently de-noise $B_1^{+}$ maps, which has the potential to improve other MR-based EPT techniques. Furthermore, PIFON-EPT is the first technique that can reconstruct EP and $B_{1}^{+}$ simultaneously from incomplete noisy MR measurements.


翻译:目的:本文介绍了一种基于深度学习的新方法,即基于物理知识傅里叶网络的电气特性层析成像(PIFON-EPT),用于解决基于噪声和/或不完整磁共振(MR)测量的反演散射问题。 方法:我们使用两个独立的全连接神经网络,即$B_1^{+}$网络和EP网络,来解决亥姆霍兹方程,从而学习输入$B_1^{+}$映射的去噪版本并估计物体的EP。将随机傅里叶特征映射嵌入到$B_1^{+}$网络中,以更有效地学习$B_1^{+}$的高频细节。通过梯度下降法联合训练这两个神经网络,通过物理相关损失和数据误差损失的组合最小化来获得最佳结果。 结果:我们进行了几次数值实验,表明PIFON-EPT能够提供物理上一致的EP和传输场重建。即使只使用$50\%$噪声MR测量作为输入,我们的方法仍然可以重建出相对介电常数、电导率和$B_1^{+}$的整体体积平均误差分别为$2.49\%$、$4.09\%$和$0.32\%$的吻合度。考虑到物性值的渐变,PIFON-EPT的广义版本在不需要任何边界条件的情况下就可以在不同物性值区域的接口处得到准确结果。 结论:本文证明了PIFON-EPT的可行性,表明它可能是一种准确、有效的EP估计方法。 意义:PIFON-EPT可以有效地去噪$B_1^{+}$映射,这有潜力改善其他基于MR的EPT方法。此外,PIFON-EPT是第一种能够从不完整的噪声MR测量中同时重建EP和$B_{1}^{+}$的方法。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
54+阅读 · 2020年11月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
图神经网络理论基础 | 谱图理论 Ch1: Introduction
图与推荐
1+阅读 · 2022年8月18日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员