The hear-through functionality on hearing devices, which allows hearing equivalent to the open-ear while providing the possibility to modify the sound pressure at the eardrum in a desired manner, has drawn great attention from researchers in recent years. To this end, the output of the device is processed by means of an equalization filter, such that the transfer function between external sound sources and the eardrum is equivalent for the open-ear and the aided condition with the device in the ear. To achieve an ideal performance, the equalization filter design assumes the exact knowledge of all the relevant acoustic transfer functions. A particular challenge is the transfer function between the hearing device receiver and the eardrum, which is difficult to obtain in practice as it requires additional probe-tube measurements. In this work, we address this issue by proposing an individualized hear-through equalization filter design that leverages the measurement of the so-called secondary path to predict the sound pressure at the eardrum. Experimental results using real-ear measured transfer functions confirm that the proposed method achieves a good sound quality compared to the open-ear while outperforming filter designs that do not leverage the proposed estimator.
翻译:听力装置的传声功能使听力相当于开耳机的听觉功能,这种功能允许听力相当于开耳机,同时提供了以预期的方式改变耳膜的声压的可能性,近年来引起了研究人员的极大注意。为此,该装置的输出通过一个衡平过滤器处理,使外部声源和耳耳膜之间的传声功能相当于开耳机和耳机的助助听功能。为了实现理想的性能,均衡过滤器设计假定了所有相关声传功能的确切知识。一个特别的挑战在于听器接收器和耳耳膜之间的传声功能,实际上很难获得这种功能,因为需要额外的探管测量。在这项工作中,我们提出一个个性化的听力和耳耳膜之间的传声功能,利用对所谓的第二路径的测量来预测耳耳耳耳耳听声压力。使用实声量测的转移功能的实验结果证实,拟议的方法与开耳机相比,质量良好,而没有利用拟议的测算仪。