We introduce a few-shot transfer learning method for keyword spotting in any language. Leveraging open speech corpora in nine languages, we automate the extraction of a large multilingual keyword bank and use it to train an embedding model. With just five training examples, we fine-tune the embedding model for keyword spotting and achieve an average F1 score of 0.75 on keyword classification for 180 new keywords unseen by the embedding model in these nine languages. This embedding model also generalizes to new languages. We achieve an average F1 score of 0.65 on 5-shot models for 260 keywords sampled across 13 new languages unseen by the embedding model. We investigate streaming accuracy for our 5-shot models in two contexts: keyword spotting and keyword search. Across 440 keywords in 22 languages, we achieve an average streaming keyword spotting accuracy of 85.2% with a false acceptance rate of 1.2%, and observe promising initial results on keyword search.
翻译:我们引入了一种以任何语言显示关键词的微小传输学习方法。 利用9种语言的开放语音组合, 我们将大型多语种关键词库的提取自动化, 并用它来训练嵌入模式。 我们仅用5个培训示例, 微调嵌入模式用于查找关键词, 并在关键词分类上达到平均 F1 0.75 分, 这9种语言的嵌入模式所见的180个新关键字在关键词分类上达到平均F1分。 这个嵌入模式还把新语言概括为通用语言。 我们通过嵌入模式在13种新语言中取样的260个关键字的5个关键字模型的平均F1分为0.65分, 我们从两种角度调查我们5个关键字模型的流出准确性: 关键字点定位和关键字搜索。 在22种语言的440个关键字中, 我们实现了平均流关键词显示85.2%的准确度, 错误接受率为1.2%, 并观察关键词搜索的初步结果很有希望。