We introduce Equivariant Neural Field Expectation Maximization (EFEM), a simple, effective, and robust geometric algorithm that can segment objects in 3D scenes without annotations or training on scenes. We achieve such unsupervised segmentation by exploiting single object shape priors. We make two novel steps in that direction. First, we introduce equivariant shape representations to this problem to eliminate the complexity induced by the variation in object configuration. Second, we propose a novel EM algorithm that can iteratively refine segmentation masks using the equivariant shape prior. We collect a novel real dataset Chairs and Mugs that contains various object configurations and novel scenes in order to verify the effectiveness and robustness of our method. Experimental results demonstrate that our method achieves consistent and robust performance across different scenes where the (weakly) supervised methods may fail. Code and data available at https://www.cis.upenn.edu/~leijh/projects/efem


翻译:我们引入等变神经场期望极大化(EFEM),这是一种简单、有效、强韧的几何算法,可以在没有注释或基于场景的训练的情况下分割3D场景中的物体。我们通过利用单个物体形状先验来实现这种无监督分割。我们在这方面取得了两项新的进展。首先,我们将等变形状表示引入到这个问题中,以消除物体构型变化引起的复杂性。其次,我们提出了一种新颖的EM算法,可以使用等变形状先验迭代地改进分割掩模。我们收集了一个包含各种物体构型和新场景的新实际数据集Chairs and Mugs,以验证我们方法的有效性和鲁棒性。实验结果表明,我们的方法在不同的场景中实现了一致和鲁棒的性能,在(弱)监督方法可能失败的地方。代码和数据可在https://www.cis.upenn.edu/~leijh/projects/efem获得

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
24+阅读 · 2021年3月4日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员