We introduce Equivariant Neural Field Expectation Maximization (EFEM), a simple, effective, and robust geometric algorithm that can segment objects in 3D scenes without annotations or training on scenes. We achieve such unsupervised segmentation by exploiting single object shape priors. We make two novel steps in that direction. First, we introduce equivariant shape representations to this problem to eliminate the complexity induced by the variation in object configuration. Second, we propose a novel EM algorithm that can iteratively refine segmentation masks using the equivariant shape prior. We collect a novel real dataset Chairs and Mugs that contains various object configurations and novel scenes in order to verify the effectiveness and robustness of our method. Experimental results demonstrate that our method achieves consistent and robust performance across different scenes where the (weakly) supervised methods may fail. Code and data available at https://www.cis.upenn.edu/~leijh/projects/efem
翻译:我们引入等变神经场期望极大化(EFEM),这是一种简单、有效、强韧的几何算法,可以在没有注释或基于场景的训练的情况下分割3D场景中的物体。我们通过利用单个物体形状先验来实现这种无监督分割。我们在这方面取得了两项新的进展。首先,我们将等变形状表示引入到这个问题中,以消除物体构型变化引起的复杂性。其次,我们提出了一种新颖的EM算法,可以使用等变形状先验迭代地改进分割掩模。我们收集了一个包含各种物体构型和新场景的新实际数据集Chairs and Mugs,以验证我们方法的有效性和鲁棒性。实验结果表明,我们的方法在不同的场景中实现了一致和鲁棒的性能,在(弱)监督方法可能失败的地方。代码和数据可在https://www.cis.upenn.edu/~leijh/projects/efem获得