Reinforcement learning (RL) algorithms have been successfully applied to a range of challenging sequential decision making and control tasks. In this paper, we classify RL into direct and indirect RL according to how they seek the optimal policy of the Markov decision process problem. The former solves the optimal policy by directly maximizing an objective function using gradient descent methods, in which the objective function is usually the expectation of accumulative future rewards. The latter indirectly finds the optimal policy by solving the Bellman equation, which is the sufficient and necessary condition from Bellman's principle of optimality. We study policy gradient forms of direct and indirect RL and show that both of them can derive the actor-critic architecture and can be unified into a policy gradient with the approximate value function and the stationary state distribution, revealing the equivalence of direct and indirect RL. We employ a Gridworld task to verify the influence of different forms of policy gradient, suggesting their differences and relationships experimentally. Finally, we classify current mainstream RL algorithms using the direct and indirect taxonomy, together with other ones including value-based and policy-based, model-based and model-free.


翻译:强化学习(RL)算法被成功地应用于一系列具有挑战性的相继决策和控制任务。在本文中,我们根据RL如何寻求Markov决策程序问题的最佳政策,将RL分为直接和间接RL。前者通过使用梯度下降法直接实现客观功能最大化,从而解决最佳政策,其中目标功能通常是累积未来回报的预期。后者通过解决Bellman方程式间接地找到了最佳政策,而Bellman方程式是来自Bellman最佳性原则的充足和必要条件。我们研究了直接和间接RL的政策梯度形式,并表明这两种形式都能够产生行为者-批评结构,并可以统一成一种政策梯度,具有近似值函数和固定状态分布,揭示直接和间接RL的等值。我们利用Gridworld任务来核查不同政策梯度形式的影响,从实验角度提出它们的差异和关系。最后,我们用直接和间接的分类法将当前的主流RL算法与其他包括基于价值和政策的、基于模型和无模式的分类法。

1
下载
关闭预览

相关内容

【Nature-MI】可解释人工智能的药物发现
专知会员服务
44+阅读 · 2020年11月1日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2020年6月16日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
【Nature-MI】可解释人工智能的药物发现
专知会员服务
44+阅读 · 2020年11月1日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员