Grid-centric perception is a crucial field for mobile robot perception and navigation. Nonetheless, grid-centric perception is less prevalent than object-centric perception for autonomous driving as autonomous vehicles need to accurately perceive highly dynamic, large-scale outdoor traffic scenarios and the complexity and computational costs of grid-centric perception are high. The rapid development of deep learning techniques and hardware gives fresh insights into the evolution of grid-centric perception and enables the deployment of many real-time algorithms. Current industrial and academic research demonstrates the great advantages of grid-centric perception, such as comprehensive fine-grained environmental representation, greater robustness to occlusion, more efficient sensor fusion, and safer planning policies. Given the lack of current surveys for this rapidly expanding field, we present a hierarchically-structured review of grid-centric perception for autonomous vehicles. We organize previous and current knowledge of occupancy grid techniques and provide a systematic in-depth analysis of algorithms in terms of three aspects: feature representation, data utility, and applications in autonomous driving systems. Lastly, we present a summary of the current research trend and provide some probable future outlooks.
翻译:网格中心概念是移动机器人感知和导航的一个关键领域。然而,对于自主驾驶而言,网格中心概念不如对自主驾驶的物体中心概念那么普遍,因为自主车辆需要准确地认识高度动态、大规模室外交通情况,而以网格中心概念的复杂性和计算成本很高。深层次学习技术和硬件的迅速发展,使人们对以网格中心概念的演变有了新的洞察力,并使得能够部署许多实时算法。目前的工业和学术研究表明,网格中心概念具有巨大的优势,例如全面的细微环境代表制、对隔离的更大力度、效率更高的传感器聚合以及更安全的规划政策。鉴于目前缺乏对这一迅速扩大的领域的调查,我们对以网格中心概念进行分级结构的审查。我们从三个方面来组织以前和现在的关于使用网格技术的知识,并系统地深入分析各种算法:特征代表制、数据使用以及自动驾驶系统的应用。最后,我们概述了目前的研究趋势,并提供了一些可能的未来展望。</s>