Warded Datalog+- extends the logic-based language Datalog with existential quantifiers in rule heads. Existential rules are needed for advanced reasoning tasks, e.g., ontological reasoning. The theoretical efficiency guarantees of Warded Datalog+- do not cover extensions crucial for data analytics, such as arithmetic. Moreover, despite the significance of arithmetic for common data analytic scenarios, no decidable fragment of any Datalog+- language extended with arithmetic has been identified. We close this gap by defining a new language that extends Warded Datalog+- with arithmetic and prove its P-completeness. Furthermore, we present an efficient reasoning algorithm for our newly defined language and prove descriptive complexity results for a recently introduced Datalog fragment with integer arithmetic, thereby closing an open question. We lay the theoretical foundation for highly expressive Datalog+- languages that combine the power of advanced recursive rules and arithmetic while guaranteeing efficient reasoning algorithms for applications in modern AI systems, such as Knowledge Graphs.
翻译:备有数据 + 扩展了基于逻辑的语言 数据, 并在规则头中增加了存在参数 。 高级推理任务( 如本科学推理) 需要存在规则 。 备有数据 + - 的理论效率保障并不包括数据分析( 如算术) 至关重要的扩展 。 此外, 尽管对共同数据分析情景进行算术很重要, 但没有找到任何数据 + 语言与算术相扩展的可分解的碎片 。 我们通过定义一种新语言来弥补这一差距, 该语言可以扩展备有计算结果的数据 +, 并证明它的P- 完整性 。 此外, 我们为我们新定义的语言提供了有效的推理算算法, 并证明最近推出的带有整数算算值的数据碎片的描述性复杂性结果, 从而结束一个开放的问题 。 我们为高度表达的数据 + 语言打下了理论基础, 这些语言结合先进的递归规则和算法的力量, 同时保证对现代AI 系统( 如知识图表) 的应用进行有效推理算法 。