Coverage path planning is a fundamental challenge in robotics, with diverse applications in aerial surveillance, manufacturing, cleaning, inspection, agriculture, and more. The main objective is to devise a trajectory for an agent that efficiently covers a given area, while minimizing time or energy consumption. Existing practical approaches often lack a solid theoretical foundation, relying on purely heuristic methods, or overly abstracting the problem to a simple Traveling Salesman Problem in Grid Graphs. Moreover, the considered cost functions only rarely consider turn cost, prize-collecting variants for uneven cover demand, or arbitrary geometric regions. In this paper, we describe an array of systematic methods for handling arbitrary meshes derived from intricate, polygonal environments. This adaptation paves the way to compute efficient coverage paths with a robust theoretical foundation for real-world robotic applications. Through comprehensive evaluations, we demonstrate that the algorithm also exhibits low optimality gaps, while efficiently handling complex environments. Furthermore, we showcase its versatility in handling partial coverage and accommodating heterogeneous passage costs, offering the flexibility to trade off coverage quality and time efficiency.
翻译:暂无翻译