The area of domain adaptation has been instrumental in addressing the domain shift problem encountered by many applications. This problem arises due to the difference between the distributions of source data used for training in comparison with target data used during realistic testing scenarios. In this paper, we introduce a novel MultiScale Domain Adaptive YOLO (MS-DAYOLO) framework that employs multiple domain adaptation paths and corresponding domain classifiers at different scales of the recently introduced YOLOv4 object detector. Building on our baseline multiscale DAYOLO framework, we introduce three novel deep learning architectures for a Domain Adaptation Network (DAN) that generates domain-invariant features. In particular, we propose a Progressive Feature Reduction (PFR), a Unified Classifier (UC), and an Integrated architecture. We train and test our proposed DAN architectures in conjunction with YOLOv4 using popular datasets. Our experiments show significant improvements in object detection performance when training YOLOv4 using the proposed MS-DAYOLO architectures and when tested on target data for autonomous driving applications. Moreover, MS-DAYOLO framework achieves an order of magnitude real-time speed improvement relative to Faster R-CNN solutions while providing comparable object detection performance.
翻译:域适应领域有助于解决许多应用中遇到的域转移问题,这个问题之所以产生,是因为用于培训的源数据与实际测试情景中使用的目标数据之间的分布差异。在本文件中,我们引入了一个新型的多空间适应性YOLO(MS-DAYOLO)框架(MS-DAYOLO),该框架使用最近推出的YOLOv4天体探测器的不同规模的多域适应路径和相应的域分类。我们以我们的多尺度多尺度DAYOLO框架为基础,为产生域变量特性的域适应网络引入了三个新的深层次学习结构。特别是,我们提出了渐进功能减少(PFR)、统一分类(UCUC)和综合结构。我们利用流行数据集与YOLOv4一起培训和测试了我们拟议的DAN结构。我们的实验表明,在培训YOLOV4时,在使用拟议的MS-DAYOLOOO结构并在测试自动驱动应用程序的目标数据时,在提供与快速性探测相比的实时性能改进时,在提供可比较的实时性探测目标解决办法时,在提供等级实时的顺序上取得了显著的实时改进。