Rational approximation schemes for reconstructing signals from samples with poorly separated spectral content are described. These methods are automatic and adaptive, requiring no tuning or manual parameter selection. Collectively, they form a framework for fitting trigonometric rational models to data that is robust to various forms of corruption, including additive Gaussian noise, perturbed sampling grids, and missing data. Our approach combines a variant of Prony's method with a modified version of the AAA algorithm. Using representations in both frequency and time space, a collection of algorithms is described for adaptively computing with trigonometric rationals. This includes procedures for differentiation, filtering, convolution, and more.
翻译:介绍了从光谱内容不完全分离的样本中重建信号的逻辑近似方案,这些方法是自动和适应性的,不需要调整或人工选择参数。这些方法共同形成了一个框架,使三角计量合理模型适合对各种形式的腐败具有活力的数据,包括添加式高斯噪音、扰动式取样网和缺失的数据。我们的方法将Prony方法的变式与AAA算法的修改版本结合起来。利用频率和时间空间的表示,用三角度理性来描述适应性计算的各种算法集。这包括区分、过滤、演进等程序。