A lattice is a partially ordered set supporting a meet (or join) operation that returns the largest lower bound (smallest upper bound) of two elements. Just like graphs, lattices are a fundamental structure that occurs across domains including social data analysis, natural language processing, computational chemistry and biology, and database theory. In this paper we introduce discrete-lattice signal processing (DLSP), an SP framework for data, or signals, indexed by such lattices. We use the meet (or join) to define a shift operation and derive associated notions of filtering, Fourier basis and transform, and frequency response. We show that the spectrum of a lattice signal inherits the lattice structure of the signal domain and derive a sampling theorem. Finally, we show two prototypical applications: spectral analysis of formal concept lattices in social science and sampling and Wiener filtering of multiset lattices in combinatorial auctions. Formal concept lattices are a compressed representation of relations between objects and attributes. Since relations are equivalent to bipartite graphs and hypergraphs, DLSP offers a form of Fourier analysis for these structures.
翻译:Lattice 是一个部分命令设置, 用于返回两个元素的最大较低约束( 最小上限) 的会( 或连成) 操作。 正如图表一样, lattices 是贯穿社会数据分析、 自然语言处理、 计算化学和生物学以及数据库理论等各个领域的基本结构。 在本文中, 我们引入了离散的 latice 信号处理( DLSP ), 数据或信号的 SP 框架, 由这些 lattics 索引 。 我们使用会( 或连成) 来定义一个转换操作, 并得出过滤、 Fourier 基础和变换以及频率响应等相关概念。 我们显示, lattice 信号的频谱将继承信号域的 lattice 结构, 并生成一个抽样的标语。 最后, 我们展示了两种原型应用: 社会科学和取样中正式概念的 Lattics 的光谱分析, 以及组合拍卖中多位 Lattices 的 Wener 过滤 。 。 正式概念是对象和属性之间关系的压缩代表 。 由于 关系相当于双片图和 4 格式的分析 。 DLSP 。