A $k$-submodular function is a pairwise monotone function that given $k$ disjoint subsets outputs a value that is submodular in every orthant. In this paper, we provide a new framework for $k$-submodular maximization problems, by relaxing the optimization to the continuous space with the multilinear extension of $k$-submodular functions and rounding the fractional solution to recover the discrete solution. The multilinear extension introduces new techniques to analyze and optimize $k$-submodular functions. When the variables are unconstrained, we propose simple algorithms that achieve almost $\frac{1}{2}$-approximation, which is asymptotically optimal. For finite $k$, the factors could be improved to almost as good as any combinatorial algorithm based on Iwata, Tanigawa, and Yoshida's meta-framework ($\frac{k}{2k-1}$-approximation for the monotone case and $\frac{k^2+1}{2k^2+1}$-approximation for the non-monotone case). For monotone functions, almost $\frac{1}{2}$-approximation are obtained under total size and knapsack constraints.
翻译:$k$ submodual 函数是一个双向单调函数, 它给 $k$ 脱节子项产出提供一种值, 在每件或每件中都是子调值。 在本文中, 我们为 $k$ 的子模块最大化问题提供了一个新框架, 通过多线性扩展 $k$ 子模块函数将优化到连续空间, 并围绕分解解决方案来恢复离散解决方案 。 多线性扩展引入了分析和优化 $k$ 子项函数的新技术 。 当变量不受控制时, 我们建议了几乎达到 $\ frac{ 1\\% 2} $ 的简单算法, 以恒度为最佳 。 对于限定值 $ kk$, 因素可以改进到与基于 Iwata 、 Tanigawa 和 Yoshida 的元框架算算法 ($\ frac{k% 2k- 1} kaptoromomom) 函数一样。 对于单项和 $\% 2\\\\\\\\\\\\\\ x% 1} sucro prasy casycal 函数, 函数的功能可以改进。