Numerical Generalized Randomized Hamiltonian Monte Carlo is introduced, as a robust, easy to use and computationally fast alternative to conventional Markov chain Monte Carlo methods for continuous target distributions. A wide class of piecewise deterministic Markov processes generalizing Randomized HMC (Bou-Rabee and Sanz-Serna, 2017) by allowing for state-dependent event rates is defined. Under very mild restrictions, such processes will have the desired target distribution as an invariant distribution. Secondly, the numerical implementation of such processes, based on adaptive numerical integration of second order ordinary differential equations (ODEs) is considered. The numerical implementation yields an approximate, yet highly robust algorithm that, unlike conventional Hamiltonian Monte Carlo, enables the exploitation of the complete Hamiltonian trajectories (hence the title). The proposed algorithm may yield large speedups and improvements in stability relative to relevant benchmarks, while incurring numerical biases that are negligible relative to the overall Monte Carlo errors. Granted access to a high-quality ODE code, the proposed methodology is both easy to implement and use, even for highly challenging and high-dimensional target distributions.
翻译:作为常规的Markov连锁公司Monte Carlo 连续目标分布的可靠、易于使用和计算快速的替代方法,引入了数字通用的汉密尔顿-拉比和桑兹-塞尔纳 Monte Carlo, 这是一种强大的、易于使用和快速的常规Markov 目标分布方法。 一种广泛的片段确定式Markov 进程,通过允许国家独立事件率(Bou-Rabee和Sanz-Serna, 2017年)来概括随机 HMC (Bou-Rabee和Sanz-Serna, 2017年) 。 在非常温和的限制下,这种进程将具有理想的目标分布,作为变化性分布。 其次,在二阶普通差异方(ODs)适应性数字整合的基础上,这种进程的数字实施被考虑。 数字实施产生了一种近似但非常有力的算法,但与传统的汉密尔顿-蒙特卡洛 相比, 使得整个汉密尔顿轨道(这里的标题) 能够被利用。 拟议的算法可以产生与相关基准相比, 产生巨大的快速和高难度目标分布。 。 。 与整个蒙卡洛误差偏差相对, 。