Segmenting medical images accurately and reliably is important for disease diagnosis and treatment. It is a challenging task because of the wide variety of objects' sizes, shapes, and scanning modalities. Recently, many convolutional neural networks (CNN) have been designed for segmentation tasks and achieved great success. Few studies, however, have fully considered the sizes of objects, and thus most demonstrate poor performance for small objects segmentation. This can have a significant impact on the early detection of diseases. This paper proposes a Context Axial Reverse Attention Network (CaraNet) to improve the segmentation performance on small objects compared with several recent state-of-the-art models. CaraNet applies axial reserve attention (ARA) and channel-wise feature pyramid (CFP) module to dig feature information of small medical object. And we evaluate our model by six different measurement metrics. We test our CaraNet on brain tumor (BraTS 2018) and polyp (Kvasir-SEG, CVC-ColonDB, CVC-ClinicDB, CVC-300, and ETIS-LaribPolypDB) segmentation datasets. Our CaraNet achieves the top-rank mean Dice segmentation accuracy, and results show a distinct advantage of CaraNet in the segmentation of small medical objects.
翻译:准确可靠地分割医疗图象对于疾病诊断和治疗非常重要, 这是一项具有挑战性的任务, 因为物体的大小、 形状和扫描模式多种多样。 最近, 许多革命性神经网络(CNN) 被设计为分解任务, 并取得了巨大成功。 然而, 很少有研究充分考虑到物体的大小, 从而显示小物体分解的性能不佳。 这可能会对早期发现疾病产生重大影响 。 本文建议建立一个环境轴反转注意网络( CaraNet), 以便与最近几个最先进的模型相比, 改善小物体的分解性能。 CaraNet 应用了轴心保留关注( ARA) 和频道特征金字塔( CFP) 模块来挖掘小医疗对象的特征信息。 我们用六种不同的测量度度来评估我们的模型。 我们测试大脑肿瘤( BraTS 2018) 和 聚普( Kvasir- SEG, CVC- ColonDB, CVC- ClinicDB, CVC- ClinicDB, CVC- 300, CVC- 和 ETIS- LARIPDD) 显示我们磁段中小段数据分析结果。