Classification and segmentation are crucial in medical image analysis as they enable accurate diagnosis and disease monitoring. However, current methods often prioritize the mutual learning features and shared model parameters, while neglecting the reliability of features and performances. In this paper, we propose a novel Uncertainty-informed Mutual Learning (UML) framework for reliable and interpretable medical image analysis. Our UML introduces reliability to joint classification and segmentation tasks, leveraging mutual learning with uncertainty to improve performance. To achieve this, we first use evidential deep learning to provide image-level and pixel-wise confidences. Then, an Uncertainty Navigator Decoder is constructed for better using mutual features and generating segmentation results. Besides, an Uncertainty Instructor is proposed to screen reliable masks for classification. Overall, UML could produce confidence estimation in features and performance for each link (classification and segmentation). The experiments on the public datasets demonstrate that our UML outperforms existing methods in terms of both accuracy and robustness. Our UML has the potential to explore the development of more reliable and explainable medical image analysis models. We will release the codes for reproduction after acceptance.


翻译:分类和分割在医学图像分析中具有关键作用,因为它们可以实现精确的诊断和疾病监测。然而,当前的方法往往优先考虑相互学习的特征和共享的模型参数,而忽略了特征和性能的可靠性。在本文中,我们提出了一个新颖的基于不确定性的互信息学习(UML)框架,用于可靠和可解释的医学图像分析。我们的UML在相互学习过程中引入了可靠性,利用不确定性来提高性能。为了实现这一点,我们首先使用证据深度学习提供图像级和像素级置信度。然后,构建一个带有不确定性导航解码器,以更好地使用相互特征和生成分割结果。此外,提出了一个不确定性教师,用于筛选可靠的分类掩模。总体而言,UML能够为每个链接(分类和分割)产生特征和性能的可信度估计。对公共数据集的实验表明,我们的UML在准确性和鲁棒性方面优于现有方法。我们将在接受后发布代码以供复现。

0
下载
关闭预览

相关内容

统一建模语言(UML,Unified Modeling Language)是由国际软件行业组织 OMG(对象管理集团 omg.org)自 1997 年起研发的用于 IT 各领域建模的一套标准、通用、图形化的面向对象(OO)建模语言,对应的国际标准为 ISO/IEC 19505。UML 具有简单、直观、形象、表达力强等特点,因此不仅常用于复杂软件系统架构的建模和面向对象分析与设计(OOAD),也可用于复杂业务流程及系统需求的建模。UML 当前的最新版本为 v2.5(2015.3)。 UML 起源于 3 位著名的软件工程方法学家 Grady Booch、James Rumbaugh、Ivar Jacobson 融合、统一了他们各自原来的建模语言和方法。
专知会员服务
45+阅读 · 2021年1月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2021年1月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员