Moving objects in scenes are still a severe challenge for the SLAM system. Many efforts have tried to remove the motion regions in the images by detecting moving objects. In this way, the keypoints belonging to motion regions will be ignored in the later calculations. In this paper, we proposed a novel motion removal method, leveraging semantic information and optical flow to extract motion regions. Different from previous works, we don't predict moving objects or motion regions directly from image sequences. We computed rigid optical flow, synthesized by the depth and pose, and compared it against the estimated optical flow to obtain initial motion regions. Then, we utilized K-means to finetune the motion region masks with instance segmentation masks. The ORB-SLAM2 integrated with the proposed motion removal method achieved the best performance in both indoor and outdoor dynamic environments.
翻译:在现场移动物体对于SLAM系统来说仍然是一项严峻的挑战。 许多努力都试图通过探测移动物体来清除图像中的运动区域。 这样, 属于运动区域的键点在后来的计算中将被忽略。 在本文中, 我们提出了一种新的运动删除方法, 利用语义信息和光学流来提取运动区域。 不同于以往的工程, 我们不预测移动物体或运动区域直接来自图像序列。 我们计算了硬性光学流, 以深度和面部为合成, 并与估计的光学流作比较, 以获得初始运动区域。 然后, 我们用 K 手段将运动区域面罩用例分解面罩进行微调。 ORB- SLAM2 与拟议的移动方法相结合, 在室内和室外动态环境中都取得了最佳的性能 。