Lens flare is a common artifact in photographs occurring when the camera is pointed at a strong light source. It is caused by either multiple reflections within the lens or scattering due to scratches or dust on the lens, and may appear in a wide variety of patterns: halos, streaks, color bleeding, haze, etc. The diversity in its appearance makes flare removal extremely challenging. Existing software methods make strong assumptions about the artifacts' geometry or brightness, and thus only handle a small subset of flares. We take a principled approach to explicitly model the optical causes of flare, which leads to a novel semi-synthetic pipeline for generating flare-corrupted images from both empirical and wave-optics-simulated lens flares. Using the semi-synthetic data generated by this pipeline, we build a neural network to remove lens flare. Experiments show that our model generalizes well to real lens flares captured by different devices, and outperforms start-of-the-art methods by 3dB in PSNR.
翻译:镜头指向强烈的光源时,镜头光线耀斑是照片中常见的人工制品,是由镜头中的多反射或镜头上的刮痕或灰尘散射造成的,并可能以多种模式出现:光圈、线条、颜色出血、烟雾等。 其外观的多样性使得照明极具挑战性。 现有软件方法对文物的几何或亮度做出了强烈的假设,因此只处理少量的耀斑。 我们采取了原则性方法,明确模拟照明光学原因,从而形成新型半合成管道,从实证和波光模拟镜头耀斑生成闪光图像。 我们利用这一管道产生的半合成数据,建立了一个神经网络来清除闪光。 实验显示,我们的模型非常概括地反映了不同装置所捕捉到的真实的透光耀斑,而PSNR 3dB 则以外形外形的外形方法。