In this work, we study the problem of non-blind image deconvolution and propose a novel recurrent network architecture that leads to very competitive restoration results of high image quality. Motivated by the computational efficiency and robustness of existing large scale linear solvers, we manage to express the solution to this problem as the solution of a series of adaptive non-negative least-squares problems. This gives rise to our proposed Recurrent Least Squares Deconvolution Network (RLSDN) architecture, which consists of an implicit layer that imposes a linear constraint between its input and output. By design, our network manages to serve two important purposes simultaneously. The first is that it implicitly models an effective image prior that can adequately characterize the set of natural images, while the second is that it recovers the corresponding maximum a posteriori (MAP) estimate. Experiments on publicly available datasets, comparing recent state-of-the-art methods, show that our proposed RLSDN approach achieves the best reported performance both for grayscale and color images for all tested scenarios. Furthermore, we introduce a novel training strategy that can be adopted by any network architecture that involves the solution of linear systems as part of its pipeline. Our strategy eliminates completely the need to unroll the iterations required by the linear solver and, thus, it reduces significantly the memory footprint during training. Consequently, this enables the training of deeper network architectures which can further improve the reconstruction results.


翻译:在这项工作中,我们研究非盲目图像分解的问题,并提出一个新的循环网络结构,导致高图像质量的高度竞争性恢复结果。受现有大型线性线性解析器的计算效率和稳健性驱动,我们设法通过一系列适应性非负最小平方问题的解决方案来表达这一问题的解决方案。这导致我们提议的复发最小广场分解网络(RELSDN)结构(RLSDN)结构,它由一个隐含层组成,在输入和输出之间造成线性限制。设计时,我们的网络可以同时服务两个重要目的。首先,它隐含一个有效的图像模型,之前能够充分描述一套自然图像的特征,而第二个则是它恢复了相应的最高后台(MAP)估计值。对公开提供的数据集的实验,比较了最新的最先进方法,表明我们提议的RLSDN方法能够实现所报告的灰度和彩色图像的最佳性能。此外,我们引入了一个新的培训战略,可以被任何网络结构所采用,从而大大地描述自然图象的图象的图案特征,从而使得我们的直线性系统结构的解决方案得到彻底的改进。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
11+阅读 · 2019年4月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Arxiv
6+阅读 · 2018年7月9日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关论文
Arxiv
6+阅读 · 2020年10月8日
Arxiv
11+阅读 · 2019年4月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Arxiv
6+阅读 · 2018年7月9日
Arxiv
3+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员