Deformable image registration can obtain dynamic information about images, which is of great significance in medical image analysis. The unsupervised deep learning registration method can quickly achieve high registration accuracy without labels. However, these methods generally suffer from uncorrelated features, poor ability to register large deformations and details, and unnatural deformation fields. To address the issues above, we propose an unsupervised multi-scale correlation iterative registration network (SearchMorph). In the proposed network, we introduce a correlation layer to strengthen the relevance between features and construct a correlation pyramid to provide multi-scale relevance information for the network. We also design a deformation field iterator, which improves the ability of the model to register details and large deformations through the search module and GRU while ensuring that the deformation field is realistic. We use single-temporal brain MR images and multi-temporal echocardiographic sequences to evaluate the model's ability to register large deformations and details. The experimental results demonstrate that the method in this paper achieves the highest registration accuracy and the lowest folding point ratio using a short elapsed time to state-of-the-art.


翻译:在医学图像分析中,未经监督的深层学习登记方法可以迅速实现高注册准确度,然而,这些方法一般都具有不相干的特点,登记大变形和细节的能力差,以及异常变形领域。为了解决上述问题,我们提议建立一个未经监督的多尺度相关迭代登记网络(SearchMorph)。在拟议的网络中,我们引入一个相关层,以加强各特征之间的关联性,并构建一个相关金字塔,为网络提供多尺度相关信息。我们还设计了一个变形场试剂,通过搜索模块和GRU提高模型登记细节和大变形的能力,同时确保变形领域现实。我们使用单时脑MM图像和多时热心序列来评价模型登记大变形和细节的能力。实验结果显示,本文中的方法实现了最高注册准确性和最低折叠点比率,使用短时间到状态。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员