Recent works achieve excellent results in defocus deblurring task based on dual-pixel data using convolutional neural network (CNN), while the scarcity of data limits the exploration and attempt of vision transformer in this task. In addition, the existing works use fixed parameters and network architecture to deblur images with different distribution and content information, which also affects the generalization ability of the model. In this paper, we propose a dynamic multi-scale network, named DMTNet, for dual-pixel images defocus deblurring. DMTNet mainly contains two modules: feature extraction module and reconstruction module. The feature extraction module is composed of several vision transformer blocks, which uses its powerful feature extraction capability to obtain richer features and improve the robustness of the model. The reconstruction module is composed of several Dynamic Multi-scale Sub-reconstruction Module (DMSSRM). DMSSRM can restore images by adaptively assigning weights to features from different scales according to the blur distribution and content information of the input images. DMTNet combines the advantages of transformer and CNN, in which the vision transformer improves the performance ceiling of CNN, and the inductive bias of CNN enables transformer to extract more robust features without relying on a large amount of data. DMTNet might be the first attempt to use vision transformer to restore the blurring images to clarity. By combining with CNN, the vision transformer may achieve better performance on small datasets. Experimental results on the popular benchmarks demonstrate that our DMTNet significantly outperforms state-of-the-art methods.
翻译:最近的工作在利用进化神经网络(CNN)在双像素数据的基础上,在利用进化神经网络(NCN)的双像像素数据进行分流任务方面取得了极佳的成果,而数据稀缺限制了对视觉变异器的探索和尝试;此外,现有作品使用固定参数和网络结构来用不同分布和内容信息来分流图像,这也影响到模型的概括能力。在本文件中,我们建议建立一个动态的多尺度网络,名为DMTNet,用于双像素图像分流。DMTNet主要包含两个模块:特征提取模块和重建模块。特征提取模块由几个视觉变异器块组成,这些变异器使用其强大的特性提取能力来获取更丰富的特征,并提高模型的稳健性。重建模块由若干动态多尺度子重建模块组成(DMSSRM)。DMSRM可以根据输入图像的模糊分布和内容信息对不同比例的特征进行调整,恢复图像。DMTNet将国家变异器和CNN的优势结合起来,其中的变异器将大大改进了我们的图像变异性变异性图像,从而使CNNCIS系统更可靠地实现了大规模的图像升级。