Many possible fields of application of robots in real world settings hinge on the ability of robots to grasp objects. As a result, robot grasping has been an active field of research for many years. With our publication we contribute to the endeavor of enabling robots to grasp, with a particular focus on bin picking applications. Bin picking is especially challenging due to the often cluttered and unstructured arrangement of objects and the often limited graspability of objects by simple top down grasps. To tackle these challenges, we propose a fully self-supervised reinforcement learning approach based on a hybrid discrete-continuous adaptation of soft actor-critic (SAC). We employ parametrized motion primitives for pushing and grasping movements in order to enable a flexibly adaptable behavior to the difficult setups we consider. Furthermore, we use data augmentation to increase sample efficiency. We demonnstrate our proposed method on challenging picking scenarios in which planar grasp learning or action discretization methods would face a lot of difficulties
翻译:在现实世界环境中应用机器人的许多可能领域取决于机器人掌握物体的能力。 因此, 机器人掌握是多年来一个积极的研究领域。 我们的出版有助于使机器人能够掌握, 特别侧重于垃圾选择应用程序。 本选取特别具有挑战性, 这是因为物体的选取安排往往杂乱无章, 以及物体通过简单的上下下套掌握的可获取性往往有限。 为了应对这些挑战, 我们提议了一种完全由自己监督的强化学习方法, 其基础是软性行为者- critic (SAC) 的混合、 离散和连续适应。 我们使用极化运动原始元素来推动和掌握运动, 以便能够灵活地适应我们所考虑的困难组合。 此外, 我们使用数据增强来提高样本效率。 我们用我们拟议的方法来挑战选取的情景, 在这种情景中, 计划抓取学习或行动离散方法将面临许多困难。