In this work we consider the problem of computing the $(\min, +)$-convolution of two sequences $a$ and $b$ of lengths $n$ and $m$, respectively, where $n \geq m$. We assume that $a$ is arbitrary, but $b_i = f(i)$, where $f(x) \colon [0,m) \to \mathbb{R}$ is a function with one of the following properties: 1. the linear case, when $f(x) =\beta + \alpha \cdot x$; 2. the monotone case, when $f(i+1) \geq f(i)$, for any $i$; 3. the convex case, when $f(i+1) - f(i) \geq f(i) - f(i-1)$, for any $i$; 4. the concave case, when $f(i+1) - f(i) \leq f(i) - f(i-1)$, for any $i$; 5. the piece-wise linear case, when $f(x)$ consist of $p$ linear pieces; 6. the polynomial case, when $f \in \mathbb{Z}^d[x]$, for some fixed $d$. To the best of our knowledge, the cases 4-6 were not considered in literature before. We develop true sub-quadratic algorithms for them. We apply our results to the knapsack problem with a separable nonlinear objective function, shortest lattice vector, and closest lattice vector problems.
翻译:在这项工作中,我们考虑的是计算美元(美元,+)的向量(美元)的问题,在美元/美元(美元)和美元(美元)美元(美元)和美元(美元)的情况下,计算两个序列(美元)的向量(美元)和美元(美元)的向量(美元),美元(美元)是任意的,但在美元(美元)= f(一)美元(美元)的情况下,美元(美元)=美元(美元)=f(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)x(美元)-(美元)-(美元)(美元)-(美元(美元)(美元)/(美元(美元)(美元)(美元)/(美元)(美元)(美元)/(美元)(美元)(美元)/(美元)(美元)/(美元)/(美元)/(美元)(美元)(美元)/(美元)(美元)(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/美元)/(美元)/美元)(美元)/美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元(美元)/(美元)/(美元)/(美元/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元)/(美元