The paper presents a technique for constructing noisy data structures called a walking tree. We apply it for a Red-Black tree (an implementation of a Self-Balanced Binary Search Tree) and a segment tree. We obtain the same complexity of the main operations for these data structures as in the case without noise (asymptotically). We use these data structures in quantum algorithms for two problems: the Exam Problem and the Largest File Problem. Finally, we suggest new quantum solution for strings sorting problem and show the lower bound. The upper bound and lower bound for the problem are the same up to log factor. At the same time, it is more effective than classical counterparts.
翻译:本文展示了构建叫步行树的吵闹数据结构的技术。 我们将其应用于红- 黑树( 实施自我平衡的二进制搜索树 ) 和 片段树 。 我们获得了与无噪音( 暂时的) 一样的这些数据结构主要操作的复杂程度。 我们在量子算法中使用了这些数据结构用于两个问题: Exam 问题和最大文件问题 。 最后, 我们为字符串排序问题提出了新的量子解决方案, 并展示了下界 。 问题的上界和下界与日志系数相同。 与此同时, 它比古典的对应方更有效 。