S. J. van Enk and R. Pike in PRA 66, 024306 (2002) argue that the equilibrium solution to a quantum game isn't unique but is already present in the classical game itself. In this work, we contest this assertion by showing that a random strategy in a particular quantum (Hawk-Dove) game is unique to the quantum game. In other words, one cannot obtain the equilibrium solution of the quantum Hawk-Dove game in the classical Hawk-Dove game. Moreover, we provide an analytical solution to the quantum $2\times2$ strategic form Hawk-Dove game using randomly mixed strategies. The random strategy which we describe is Pareto optimal with their payoff classically unobtainable. We compare quantum strategies to correlated strategies and find that correlated strategies in the quantum Hawk-Dove game or quantum Prisoner's dilemma yield the Nash equilibrium solution.
翻译:S. J. van Enk和R. Pike in PRA 66, 024306 (2002) 认为量子游戏的平衡解决方案并不独特,但已经在古典游戏本身中存在。在这项工作中,我们通过显示量子游戏(Hawk-Dove)中随机策略是量子游戏(Hawk-Dove)中独有的,来反驳这一说法。换句话说,在古典霍克-道夫游戏中,人们无法获得量子霍克-道夫游戏的平衡解决方案。此外,我们利用随机混合策略,为量子 2\times2$ 战略形式霍克-道夫游戏提供了一个分析解决方案。我们描述的随机策略是Pareto 最佳的策略,而其纯正的回报是无法实现的。我们比较量子策略与量子游戏或量子囚犯两难中的相关策略,发现量子游戏或量子囚犯的策略产生了纳什平衡解决方案。