Approximate linear programs (ALPs) are well-known models based on value function approximations (VFAs) to obtain policies and lower bounds on the optimal policy cost of discounted-cost Markov decision processes (MDPs). Formulating an ALP requires (i) basis functions, the linear combination of which defines the VFA, and (ii) a state-relevance distribution, which determines the relative importance of different states in the ALP objective for the purpose of minimizing VFA error. Both these choices are typically heuristic: basis function selection relies on domain knowledge while the state-relevance distribution is specified using the frequency of states visited by a heuristic policy. We propose a self-guided sequence of ALPs that embeds random basis functions obtained via inexpensive sampling and uses the known VFA from the previous iteration to guide VFA computation in the current iteration. Self-guided ALPs mitigate the need for domain knowledge during basis function selection as well as the impact of the initial choice of the state-relevance distribution, thus significantly reducing the ALP implementation burden. We establish high probability error bounds on the VFAs from this sequence and show that a worst-case measure of policy performance is improved. We find that these favorable implementation and theoretical properties translate to encouraging numerical results on perishable inventory control and options pricing applications, where self-guided ALP policies improve upon policies from problem-specific methods. More broadly, our research takes a meaningful step toward application-agnostic policies and bounds for MDPs.
翻译:近似线性程序(ALPs)是众所周知的模型,其依据是价值函数近似值(VFAs),以获得政策和下限,了解贴现成本的Markov决策程序的最佳政策成本。 制定ALP需要 (一) 基础功能,其线性组合定义了VFA, 以及 (二) 国家相关性分布,它决定了不同国家在ALP目标中为尽量减少VFA错误而具有的相对重要性。这两种选择通常都是超常性的:基准函数选择取决于域知识,而国家相关性分配则使用超常政策所考察的国家频率来指定。我们建议一个自导的ALP序列,其中嵌入通过廉价抽样获得的随机基础功能,并使用先前版本中已知VFAFA的已知VFA值组合来指导VFA的计算。 自我指导ALPs在基础函数选择中减少了域知识的需求,以及最初选择国家相关性分布的影响,从而大大降低了ALPDP的执行步权,从而大大减轻了ALPDP的执行负担。 我们从最有可能性的研究、最有利于性的政策排序中,我们从可改进了VFAFA的排序到从可改进的计算方法。