Approximate linear programs (ALPs) are well-known models based on value function approximations (VFAs) to obtain policies and lower bounds on the optimal policy cost of discounted-cost Markov decision processes (MDPs). Formulating an ALP requires (i) basis functions, the linear combination of which defines the VFA, and (ii) a state-relevance distribution, which determines the relative importance of different states in the ALP objective for the purpose of minimizing VFA error. Both these choices are typically heuristic: basis function selection relies on domain knowledge while the state-relevance distribution is specified using the frequency of states visited by a heuristic policy. We propose a self-guided sequence of ALPs that embeds random basis functions obtained via inexpensive sampling and uses the known VFA from the previous iteration to guide VFA computation in the current iteration. Self-guided ALPs mitigate the need for domain knowledge during basis function selection as well as the impact of the initial choice of the state-relevance distribution, thus significantly reducing the ALP implementation burden. We establish high probability error bounds on the VFAs from this sequence and show that a worst-case measure of policy performance is improved. We find that these favorable implementation and theoretical properties translate to encouraging numerical results on perishable inventory control and options pricing applications, where self-guided ALP policies improve upon policies from problem-specific methods. More broadly, our research takes a meaningful step toward application-agnostic policies and bounds for MDPs.


翻译:近似线性程序(ALPs)是众所周知的模型,其依据是价值函数近似值(VFAs),以获得政策和下限,了解贴现成本的Markov决策程序的最佳政策成本。 制定ALP需要 (一) 基础功能,其线性组合定义了VFA, 以及 (二) 国家相关性分布,它决定了不同国家在ALP目标中为尽量减少VFA错误而具有的相对重要性。这两种选择通常都是超常性的:基准函数选择取决于域知识,而国家相关性分配则使用超常政策所考察的国家频率来指定。我们建议一个自导的ALP序列,其中嵌入通过廉价抽样获得的随机基础功能,并使用先前版本中已知VFAFA的已知VFA值组合来指导VFA的计算。 自我指导ALPs在基础函数选择中减少了域知识的需求,以及最初选择国家相关性分布的影响,从而大大降低了ALPDP的执行步权,从而大大减轻了ALPDP的执行负担。 我们从最有可能性的研究、最有利于性的政策排序中,我们从可改进了VFAFA的排序到从可改进的计算方法。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员