We argue that proven exponential upper bounds on runtimes, an established area in classic algorithms, are interesting also in heuristic search and we prove several such results. We show that any of the algorithms randomized local search, Metropolis algorithm, simulated annealing, and (1+1) evolutionary algorithm can optimize any pseudo-Boolean weakly monotonic function under a large set of noise assumptions in a runtime that is at most exponential in the problem dimension~$n$. This drastically extends a previous such result, limited to the (1+1) EA, the LeadingOnes function, and one-bit or bit-wise prior noise with noise probability at most $1/2$, and at the same time simplifies its proof. With the same general argument, among others, we also derive a sub-exponential upper bound for the runtime of the $(1,\lambda)$ evolutionary algorithm on the OneMax problem when the offspring population size $\lambda$ is logarithmic, but below the efficiency threshold. To show that our approach can also deal with non-trivial parent population sizes, we prove an exponential upper bound for the runtime of the mutation-based version of the simple genetic algorithm on the OneMax benchmark, matching a known exponential lower bound.
翻译:我们争论说,经证明的运行时间的指数性上限(经典算法的一个既定区域)在超时搜索中也很有意思,我们也证明了若干这样的结果。我们表明,任何一种算法(随机随机本地搜索 ) 、 大都会算法、 模拟肛门和(1+1) 进化算法都可以在大量噪声假设下优化任何伪Boolean 微弱的单体功能,而运行时间最多是问题维度的指数 ~ 美元 。这大大扩展了先前的这种结果, 仅限于 (1+1) EA, “领导一号” 函数, 以及一比特或比特的先前噪音, 其噪音概率最多为1/2美元, 并同时简化其证据。 同样的一般观点( ), 除其他外, 在运行时间 $(1,\\\\ lambda) $ 最多为指数维值的运行时间里, 当后代人口规模为 $\ lambda 美元为对数, 但低于效率临界值的临界值时, 我们还可以用非三位或位前的母体的母体间噪音来对付非三端母体型的母体的基因级基模型, 直线标定。