In recent decades, with the emergence of numerous novel intelligent optimization algorithms, many optimization researchers have begun to look for a basic search mechanism for their schemes that provides a more essential explanation of their studies. This paper aims to study the basic mechanism of an algorithm for black-box optimization with quantum theory. To achieve this goal, the Schroedinger equation is employed to establish the relationship between the optimization problem and the quantum system, which makes it possible to study the dynamic search behaviors in the evolution process with quantum theory. Moreover, to explore the basic behavior of the optimization system, the optimization problem is assumed to be decomposed and approximated. Then, a multilevel approximation quantum dynamics model of the optimization algorithm is established, which provides a mathematical and physical framework for the analysis of the optimization algorithm. Correspondingly, the basic search behavior based on this model is derived, which is governed by quantum theory. Comparison experiments and analysis between different bare-bones algorithms confirm the existence of the quantum mechanic based basic search mechanism of the algorithm on black-box optimization.
翻译:近几十年来,随着大量新的智能优化算法的出现,许多优化研究者开始寻找基本搜索机制,以了解能够对其研究作出更基本解释的计划。本文旨在研究使用量子理论进行黑盒优化的算法的基本机制。为了实现这一目标,施罗德因格方程式被用来确定优化问题与量子系统之间的关系,从而有可能用量子理论研究进化过程中动态搜索行为。此外,为了探索优化系统的基本行为,优化问题被假定为已经分解和接近。然后,建立了优化算法的多级近似量子动态模型,为分析优化算法提供了数学和物理框架。相应地,基于该模型的基本搜索行为由量子理论进行推导。不同光骨算法之间的比较实验和分析证实了基于黑盒优化算法基本搜索机制的量子机械的存在。