This work presents a new class of variational family -- ergodic variational flows -- that not only enables tractable i.i.d. sampling and density evaluation, but also comes with MCMC-like convergence guarantees. Ergodic variational flows consist of a mixture of repeated applications of a measure-preserving and ergodic map to an initial reference distribution. We provide mild conditions under which the variational distribution converges weakly and in total variation to the target as the number of steps in the flow increases; this convergence holds regardless of the value of variational parameters, although different parameter values may result in faster or slower convergence. Further, we develop a particular instantiation of the general family using Hamiltonian dynamics combined with deterministic momentum refreshment. Simulated and real data experiments provide an empirical verification of the convergence theory and demonstrate that samples produced by the method are of comparable quality to a state-of-the-art MCMC method.
翻译:这项工作提出了一个新的变式家庭类别 -- -- 异式流动 -- -- 不仅能够进行可移植的一.d.抽样和密度评价,而且具有MCMC类似的趋同保证。分式流动由测量-保存和随机地图的反复应用混合到初始参考分布中。我们提供了一种温和的条件,使变式分布随着流动步骤的增加而变得微弱,与目标完全不同;这种趋同不论变式参数的价值如何,都维持不变,尽管不同的参数值可能导致更快或更慢的趋同。此外,我们利用汉密尔顿动力和确定性动力再充电,对普通家庭进行特定的即时同步化。模拟和真实数据实验对趋同理论进行了实证性核查,并表明该方法产生的样品的质量与最先进的MC方法相当。