Advancements in artificial intelligence (AI) and deep learning have led to neural networks being used to generate lightning-speed answers to complex questions, to paint like Monet, or to write like Proust. Leveraging their computational speed and flexibility, neural networks are also being used to facilitate fast, likelihood-free statistical inference. However, it is not straightforward to use neural networks with data that for various reasons are incomplete, which precludes their use in many applications. A recently proposed approach to remedy this issue inputs an appropriately padded data vector and a vector that encodes the missingness pattern to a neural network. While computationally efficient, this "masking" approach can result in statistically inefficient inferences. Here, we propose an alternative approach that is based on the Monte Carlo expectation-maximization (EM) algorithm. Our EM approach is likelihood-free, substantially faster than the conventional EM algorithm as it does not require numerical optimization at each iteration, and more statistically efficient than the masking approach. This research represents a prototype problem that indicates how improvements could be made in AI by introducing Bayesian statistical thinking. We compare the two approaches to missingness using simulated incomplete data from two models: a spatial Gaussian process model, and a spatial Potts model. The utility of the methodology is shown on Arctic sea-ice data and cryptocurrency data.
翻译:暂无翻译