We consider graph representation learning in a self-supervised manner. Graph neural networks (GNNs) use neighborhood aggregation as a core component that results in feature smoothing among nodes in proximity. While successful in various prediction tasks, such a paradigm falls short of capturing nodes' similarities over a long distance, which proves to be important for high-quality learning. To tackle this problem, we strengthen the graph with two additional graph views, in which nodes are directly linked to those with the most similar features or local structures. Not restricted by connectivity in the original graph, the generated views allow the model to enhance its expressive power with new and complementary perspectives from which to look at the relationship between nodes. Following a contrastive learning approach, we propose a method that aims to maximize the agreement between representations across generated views and the original graph. We also propose a channel-level contrast approach that greatly reduces computation cost, compared to the commonly used node level contrast, which requires computation cost quadratic in the number of nodes. Extensive experiments on seven assortative graphs and four disassortative graphs demonstrate the effectiveness of our approach.


翻译:我们以自我监督的方式考虑图形代表学习。 图形神经网络( GNNs) 将邻里聚合作为核心组成部分,在附近节点间实现平滑。 虽然在各种预测任务中取得了成功,但这种模式未能在长距离内捕捉节点的相似之处,这证明对高质量的学习很重要。 为了解决这个问题,我们用另外两个图形视图加强图,其中节点直接与最相似特征或地方结构的图形直接相连。不受原始图表中连接的限制, 生成的视图使模型能够以新的和互补的视角加强其表达力,从中审视节点之间的关系。 在采用对比式学习方法之后,我们提出了一种旨在尽量扩大不同观点间代表和原始图表之间一致的方法。 我们还提出一个频道级对比法,与常用的节点水平对比相比,大幅降低计算成本,这要求在节点数中计算成本四级。 对7个方位图进行广泛的实验,以及4个不支持性图表显示了我们的方法的有效性。

0
下载
关闭预览

相关内容

【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
30+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
203+阅读 · 2020年1月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员