Navigation strategies that intentionally incorporate contact with humans (i.e. "contact-based" social navigation) in crowded environments are largely unexplored even though collision-free social navigation is a well studied problem. Traditional social navigation frameworks require the robot to stop suddenly or "freeze" whenever a collision is imminent. This paradigm poses two problems: 1) freezing while navigating a crowd may cause people to trip and fall over the robot, resulting in more harm than the collision itself, and 2) in very dense social environments where collisions are unavoidable, such a control scheme would render the robot unable to move and preclude the opportunity to study how humans incorporate robots into these environments. However, if robots are to be meaningfully included in crowded social spaces, such as busy streets, subways, stores, or other densely populated locales, there may not exist trajectories that can guarantee zero collisions. Thus, adoption of robots in these environments requires the development of minimally disruptive navigation plans that can safely plan for and respond to contacts. We propose a learning-based motion planner and control scheme to navigate dense social environments using safe contacts for an omnidirectional mobile robot. The planner is evaluated in simulation over 360 trials with crowd densities varying between 0.0 and 1.6 people per square meter. Our navigation scheme is able to use contact to safely navigate in crowds of higher density than has been previously reported, to our knowledge.


翻译:在拥挤环境中,故意与人类接触(即“以接触为基础的”社会导航)的导航战略在拥挤环境中基本上没有被探索,尽管没有碰撞的社会导航是一个研究周密的问题。传统的社会导航框架要求机器人在碰撞即将来临时突然停止或“冻住”。这一范式提出了两个问题:(1)在人群航行时,冷冻可能导致人们绊倒和跌倒在机器人身上,造成比碰撞本身更大的伤害;(2)在碰撞不可避免的非常密集的社会环境中,这种控制方案将使机器人无法移动,排除研究人类如何将机器人纳入这些环境中的机会。然而,如果机器人被有意义地纳入拥挤的社会空间,例如繁忙的街道、地铁、商店或其他人口稠密的地方,则可能不存在能够保证零碰撞的轨迹。因此,在这种环境中采用机器人需要制定最起码的破坏性导航计划,能够安全地规划和应对接触。我们提议了一个基于学习的移动规划和控制计划,以便利用更安全的接触来安全地将机器人纳入这些环境中。如果机器人纳入拥挤的社会空间,例如繁忙的街道、地铁、地铁、商店或其他人口密集的移动轨道,则要用一个固定的机器人来评估。</s>

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员