Motivated by the success of the {\em serial dictatorship} mechanism in social choice settings, we explore its usefulness in tackling various combinatorial optimization problems. We do so by considering an abstract model, in which a set of agents are asked to {\em act} in a particular ordering, called the {\em action sequence}. Each agent acts in a way that gives her the maximum possible value, given the actions of the agents who preceded her in the action sequence. Our goal is to compute action sequences that yield approximately optimal total value to the agents (a.k.a., {\em social welfare}). We assume {\em query access} to the value $v_i(S)$ that the agent i gets when she acts after the agents in the ordered set $S$. We establish tight bounds on the social welfare that can be achieved using polynomially many queries. Even though these bounds show a marginally sublinear approximation of optimal social welfare in general, excellent approximations can be obtained when the valuations stem from an underlying combinatorial domain. Indicatively, when the valuations are defined using bipartite matchings, arborescences in directed graphs, and satisfiability of Boolean expressions, simple query-efficient algorithms yield $2$-approximations. We discuss issues related to truthfulness and show how some of our algorithms can be implemented truthfully using VCG-like payments. Finally, we introduce and study the {\em price of serial dictatorship}, a notion that provides an optimistic measure of the quality of combinatorial optimization solutions generated by action sequences.
翻译:在社会选择环境中,我们以一系列连续专制机制的成功为动力,探索它对于解决各种组合优化问题的实用性。我们这样做的方法是考虑一个抽象模型,在这个模型中,要求一组代理人在一个特定的订单中(称为 \em 动作序列 ) 采取行动。每个代理人的行动方式使她具有最大可能的价值,考虑到在她之前的代理人在行动序列中的行为。我们的目标是计算行动序列,给代理人带来大约最佳总价值的行动序列(a.k.a.a., ~em 社会福利} ) 。我们假定一个抽象模型,即当代理人在订定的订单中行事时获得的值 $v_i(S) 。我们为社会福利设定了紧密的界限,考虑到在她之前的代理人的行动序列中,尽管这些界限显示一般最佳社会福利的微小的次线近近近,但是当估价来自于一个基本的组合域域域(a.k.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a