Video anomaly detection (VAD) is a challenging computer vision task with many practical applications. As anomalies are inherently ambiguous, it is essential for users to understand the reasoning behind a system's decision in order to determine if the rationale is sound. In this paper, we propose a simple but highly effective method that pushes the boundaries of VAD accuracy and interpretability using attribute-based representations. Our method represents every object by its velocity and pose. The anomaly scores are computed using a density-based approach. Surprisingly, we find that this simple representation is sufficient to achieve state-of-the-art performance in ShanghaiTech, the largest and most complex VAD dataset. Combining our interpretable attribute-based representations with implicit, deep representation yields state-of-the-art performance with a $99.1\%, 93.3\%$, and $85.9\%$ AUROC on Ped2, Avenue, and ShanghaiTech, respectively. Our method is accurate, interpretable, and easy to implement.


翻译:视频异常探测( VAD) 是一项具有挑战性的计算机视觉任务, 有许多实际应用。 异常现象本质上是模棱两可的, 用户必须理解系统决定背后的推理, 以确定理由是否合理。 在本文中, 我们提出一个简单而高效的方法, 使用基于属性的表达方式推移 VAD 准确性和可解释性的界限。 我们的方法代表着每个对象, 其速度和姿势。 异常分数是用基于密度的方法计算的。 令人惊讶的是, 我们发现这种简单的表达方式足以实现上海科技的最新性能, 上海科技是最大和最复杂的VAD数据集。 将我们可解释的属性表达方式与隐含的、 深层的表达方式结合起来, 产生最先进的表现方式, 在Ped2大道和上海科技分别是99.1 、93.3 和85.9 澳元 AUROC 。 我们的方法准确、 可解释和易于执行。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月3日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员