This paper explores techniques that focus on understanding and resolving ambiguity in language within the field of natural language processing (NLP), highlighting the complexity of linguistic phenomena such as polysemy and homonymy and their implications for computational models. Focusing extensively on Word Sense Disambiguation (WSD), it outlines diverse approaches ranging from deep learning techniques to leveraging lexical resources and knowledge graphs like WordNet. The paper introduces cutting-edge methodologies like word sense extension (WSE) and neuromyotonic approaches, enhancing disambiguation accuracy by predicting new word senses. It examines specific applications in biomedical disambiguation and language specific optimisation and discusses the significance of cognitive metaphors in discourse analysis. The research identifies persistent challenges in the field, such as the scarcity of sense annotated corpora and the complexity of informal clinical texts. It concludes by suggesting future directions, including using large language models, visual WSD, and multilingual WSD systems, emphasising the ongoing evolution in addressing lexical complexities in NLP. This thinking perspective highlights the advancement in this field to enable computers to understand language more accurately.
翻译:暂无翻译