Sequential abstractive neural summarizers often do not use the underlying structure in the input article or dependencies between the input sentences. This structure is essential to integrate and consolidate information from different parts of the text. To address this shortcoming, we propose a hierarchy-aware graph neural network (HierGNN) which captures such dependencies through three main steps: 1) learning a hierarchical document structure through a latent structure tree learned by a sparse matrix-tree computation; 2) propagating sentence information over this structure using a novel message-passing node propagation mechanism to identify salient information; 3) using graph-level attention to concentrate the decoder on salient information. Experiments confirm HierGNN improves strong sequence models such as BART, with a 0.55 and 0.75 margin in average ROUGE-1/2/L for CNN/DM and XSum. Further human evaluation demonstrates that summaries produced by our model are more relevant and less redundant than the baselines, into which HierGNN is incorporated. We also find HierGNN synthesizes summaries by fusing multiple source sentences more, rather than compressing a single source sentence, and that it processes long inputs more effectively.
翻译:序列抽象神经摘要器通常不使用输入文章中的基本结构或输入句子之间的依赖性。 这一结构对于整合和整合文本不同部分的信息至关重要。 为了解决这一缺陷,我们建议建立一个等级-觉悟图形神经网络(HierGNNN),通过三个主要步骤捕捉这种依赖性:(1) 通过稀疏的矩阵树计算所学的隐形结构树学习等级文档结构;(2) 利用新颖的传递信息节点传播机制,在这个结构上传播句子信息,以识别突出的信息;(3) 利用图形层面的关注将脱钩器集中到突出的信息上。 实验证实HierGNNN改进了强大的序列模型,如BART, CNN/DM和XSum平均为0.55和0.75/2/L差幅。 进一步的人类评估表明,我们模型产生的摘要比HierGNNN所纳入的基线更加相关和不那么多余。 我们还发现HierGNNN通过更多地使用多源句而不是压缩单一源句子来合成摘要。