The existence and uniqueness of the numerical invariant measure of the backward Euler-Maruyama method for stochastic differential equations with Markovian switching is yielded, and it is revealed that the numerical invariant measure converges to the underlying invariant measure in the Wasserstein metric. Under the polynomial growth condition of drift term the convergence rate is estimated. The global Lipschitz condition on the drift coefficients required by Bao et al., 2016 and Yuan et al., 2005 is released. Several examples and numerical experiments are given to verify our theory.
翻译:利用Markovian转换的落后的Euler-Maruyama差异方程的Euler-Maruyama方法的数值变化度量的存在和独特性得到验证,并显示数值变化度量与瓦塞斯坦指标中的基本变量变化度值相趋同。根据漂流期多数值增长条件,估计了趋同率。公布了Bao等人(2016年)和Yuan等人(2005年)要求的全球Lipschitz的漂移系数条件,并提供了若干实例和数字实验,以核实我们的理论。