We present a mathematical and numerical investigation to the shrinkingdimer saddle dynamics for finding any-index saddle points in the solution landscape. Due to the dimer approximation of Hessian in saddle dynamics, the local Lipschitz assumptions and the strong nonlinearity for the saddle dynamics, it remains challenges for delicate analysis, such as the the boundedness of the solutions and the dimer error. We address these issues to bound the solutions under proper relaxation parameters, based on which we prove the error estimates for numerical discretization to the shrinking-dimer saddle dynamics by matching the dimer length and the time step size. Furthermore, the Richardson extrapolation is employed to obtain a high-order approximation. The inherent reason of requiring the matching of the dimer length and the time step size lies in that the former serves a different mesh size from the later, and thus the proposed numerical method is close to a fully-discrete numerical scheme of some spacetime PDE model with the Hessian in the saddle dynamics and its dimer approximation serving as a "spatial operator" and its discretization, respectively, which in turn indicates the PDE nature of the saddle dynamics.


翻译:我们用数学和数字来调查缩小的马鞍动态,以寻找解决方案景观中的任何指数性马鞍点。由于赫森在马鞍动态中的偏差近似值、当地Lipschitz假设和马鞍动态的强非线性,这仍然是微妙分析的挑战,例如解决方案的界限和稀释错误。我们解决这些问题是为了在适当的放松参数下将解决方案捆绑起来,根据这些参数,我们通过匹配马鞍动态中的稀释长度和时间步骤大小,来证明数字分解到缩小的马鞍动态的误差估计值。此外,理查德森外推法被用于获得一个高顺序的近似值。要求将马鞍长度和时间级大小匹配的内在原因在于前者的网状尺寸与后者的不同,因此拟议的数字方法接近于某些空间时PDE模型的完全分解的数值计划,而赫森在马鞍动态中的模型和其稀释近近近近,分别作为“空间操作者”及其离析,这反过来表明马鞍的特性。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning with Local Gradients at the Edge
Arxiv
0+阅读 · 2022年9月16日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员