This work presents a novel Evolutionary Quantum Neural Network (EQNN) based workload prediction model for Cloud datacenter. It exploits the computational efficiency of quantum computing by encoding workload information into qubits and propagating this information through the network to estimate the workload or resource demands with enhanced accuracy proactively. The rotation and reverse rotation effects of the Controlled-NOT (C-NOT) gate serve activation function at the hidden and output layers to adjust the qubit weights. In addition, a Self Balanced Adaptive Differential Evolution (SB-ADE) algorithm is developed to optimize qubit network weights. The accuracy of the EQNN prediction model is extensively evaluated and compared with seven state-of-the-art methods using eight real world benchmark datasets of three different categories. Experimental results reveal that the use of the quantum approach to evolutionary neural network substantially improves the prediction accuracy up to 91.6% over the existing approaches.
翻译:这项工作为云中数据中心提供了一个基于新颖进化量子神经网络(EQNN)的工作量预测模型。它利用量子计算计算的效率,将工作量信息编码为qubits,并通过网络传播这一信息,以更准确地预测工作量或资源需求。控制式-NOT(C-NOT)门的旋转和倒转效应在隐藏层和输出层起到激活功能,以调整qubit重量。此外,还开发了自平衡适应性差异进化(SB-ADE)算法,以优化qubit网络重量。 EQNN预测模型的准确性得到了广泛评价,并与使用八个不同类别的实际世界基准数据集的七种最先进的方法相比较。实验结果表明,在进化神经网络中使用量子方法使预测精确率大大高于现有方法的91.6%。