Graphics Processing Units (GPUs) are currently the dominating programmable architecture for Deep Learning (DL) accelerators. The adoption of Field Programmable Gate Arrays (FPGAs) in DL accelerators is however getting momentum. In this paper, we demonstrate that Direct Hardware Mapping (DHM) of a Convolutional Neural Network (CNN) on an embedded FPGA substantially outperforms a GPU implementation in terms of energy efficiency and execution time. However, DHM is highly resource intensive and cannot fully substitute the GPU when implementing a state-of-the-art CNN. We thus propose a hybrid FPGA-GPU DL acceleration method and demonstrate that heterogeneous acceleration outperforms GPU acceleration even including communication overheads. Experimental results are conducted on a heterogeneous multi-platform setup embedding an Nvidia(R) Jetson TX2 CPU-GPU board and an Intel(R) Cyclone10GX FPGA board. The SqueezeNet, MobileNetv2, and ShuffleNetv2 mobile-oriented CNNs are experimented. We show that heterogeneous FPG-AGPU acceleration outperforms GPU acceleration for classification inference task over MobileNetv2 (12%-30% energy reduction, 4% to 26% latency reduction), SqueezeNet (21%-28% energy reduction, same latency), and ShuffleNetv2 (25% energy reduction, 21% latency reduction).


翻译:图形处理器( GPU) 是当前用于深学习加速器的可编程架构。 在 DL 加速器中采用外地可编程门阵列( FPGAs) 正在获得动力。 在本文中, 我们显示, 嵌入的 FPGA 的动态神经网络( DHM) 直接硬件绘图( DHM) 大大优于 GPU 的能效和执行时间。 然而, DHM 资源密集,无法完全取代 GPU, 以实施最先进的CNN 。 因此, 我们建议采用一种混合的 FPGA- GPU DL加速法( FPG- GPU ) 加速器加速器, 甚至包括通信管理费。 实验结果是在嵌入 Nvidia (R) Jetson TX2 PU-GPU 平面板板板和 Intel (R) Cycar10GX FPGA 平面板上, 递减速 SquezeNet2, 和ShuffleNet2- LEGPOL 递减速递减% GPIPOL 递缩缩缩缩缩缩缩为GNGM 递减局。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
分布式机器学习平台比较
云栖社区
4+阅读 · 2017年8月13日
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
分布式机器学习平台比较
云栖社区
4+阅读 · 2017年8月13日
相关论文
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
Arxiv
6+阅读 · 2018年10月3日
Top
微信扫码咨询专知VIP会员