We present Lark, a biologically inspired decision-making framework that couples LLM-driven reasoning with an evolutionary, stakeholder-aware Multi-Agent System (MAS). To address verbosity and stakeholder trade-offs, we integrate four mechanisms: (i) plasticity, which applies concise adjustments to candidate solutions; (ii) duplication and maturation, which copy high-performing candidates and specialize them into new modules; (iii) ranked-choice stakeholder aggregation using influence-weighted Borda scoring; and (iv) compute awareness via token-based penalties that reward brevity. The system iteratively proposes diverse strategies, applies plasticity tweaks, simulates stakeholder evaluations, aggregates preferences, selects top candidates, and performs duplication/maturation while factoring compute cost into final scores. In a controlled evaluation over 30 rounds comparing 14 systems, Lark Full achieves a mean rank of 2.55 (95% CI [2.17, 2.93]) and a mean composite score of 29.4/50 (95% CI [26.34, 32.46]), finishing Top-3 in 80% of rounds while remaining cost competitive with leading commercial models ($0.016 per task). Paired Wilcoxon tests confirm that all four mechanisms contribute significantly as ablating duplication/maturation yields the largest deficit ({\Delta}Score = 3.5, Cohen's d_z = 2.53, p < 0.001), followed by plasticity ({\Delta}Score = 3.4, d_z = 1.86), ranked-choice voting ({\Delta}Score = 2.4, d_z = 1.20), and token penalties ({\Delta}Score = 2.2, d_z = 1.63). Rather than a formal Markov Decision Process with constrained optimization, Lark is a practical, compute-aware neuroevolutionary loop that scales stakeholder-aligned strategy generation and makes trade-offs transparent through per-step metrics. Our work presents proof-of-concept findings and invites community feedback as we expand toward real-world validation studies.
翻译:暂无翻译