We aim at constructing a smooth basis for isogeometric function spaces on domains of reduced geometric regularity. In this context an isogeometric function is the composition of a piecewise rational function with the inverse of a piecewise rational geometry parameterization. We consider two types of singular parameterizations, domains where a part of the boundary is mapped onto one point and domains where parameter lines are mapped collinearly at the boundary. We locally map a singular tensor-product patch of arbitrary degree onto a triangular patch, thus splitting the parameterization into a singular bilinear mapping and a regular mapping on a triangular domain. This construction yields an isogeometric function space of prescribed smoothness. Generalizations to higher dimensions are also possible and are briefly discussed in the final section.
翻译:暂无翻译