We address the reflection optimization problem for a reconfigurable intelligent surface (RIS), where the RIS elements feature a set of non-uniformly spaced discrete phase shifts. This is motivated by the actual behavior of practical RIS elements, where it is shown that a uniform phase shift assumption is not realistic. A problem is formulated to find the optimal refection amplitudes and reflection phase shifts of the RIS elements such that the channel capacity of the target user is maximized. We first prove that in the optimal configuration, each RIS element is either turned off or operates at maximum amplitude. We then develop a method that finds the optimal reflection amplitudes and phases with complexity linear in the number of RIS elements. Some new and interesting insight into the reflection optimization problem is also provided.
翻译:暂无翻译