The dissimilarity mixture autoencoder (DMAE) is a neural network model for feature-based clustering that incorporates a flexible dissimilarity function and can be integrated into any kind of deep learning architecture. It internally represents a dissimilarity mixture model (DMM) that extends classical methods like K-Means, Gaussian mixture models, or Bregman clustering to any convex and differentiable dissimilarity function through the reinterpretation of probabilities as neural network representations. DMAE can be integrated with deep learning architectures into end-to-end models, allowing the simultaneous estimation of the clustering and neural network's parameters. Experimental evaluation was performed on image and text clustering benchmark datasets showing that DMAE is competitive in terms of unsupervised classification accuracy and normalized mutual information. The source code with the implementation of DMAE is publicly available at: https://github.com/juselara1/dmae


翻译:不同混合物自动编码器(DMAE)是一种基于特性的集群的神经网络模型,它包含灵活的不同功能,可以纳入任何深度学习结构,内部代表一种不同混合物模型(DMMM),将K-Means、Gaussian混合物模型或Bregman集群等古典方法扩展至任何同类和不同不同功能,通过将概率重新解释为神经网络表示方式,DMAE可以与深层学习结构整合到终端至终端模型中,允许同时估计集群和神经网络参数。对图像和文本组合基准数据集进行了实验性评估,显示DMAE在非监督分类精度和标准化的相互信息方面具有竞争力。DMAE实施源代码公布于https://github.com/juselara1/dmae:

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Discriminative Similarity for Data Clustering
Arxiv
0+阅读 · 2021年9月17日
Arxiv
9+阅读 · 2021年3月3日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
3+阅读 · 2020年2月5日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员