We proposed in this paper a new method, which we named the W4 method, to solve nonlinear equation systems. It may be regarded as an extension of the Newton-Raphson~(NR) method to be used when the method fails. Indeed our method can be applied not only to ordinary problems with non-singular Jacobian matrices but also to problems with singular Jacobians, which essentially all previous methods that employ the inversion of the Jacobian matrix have failed to solve. In this article, we demonstrate that (i) our new scheme can define a non-singular iteration map even for those problems by utilizing the singular value decomposition, (ii) a series of vectors in the new iteration map converges to the right solution under a certain condition, (iii) the standard two-dimensional problems in the literature that no single method proposed so far has been able to solve completely are all solved by our new method.
翻译:我们在本文中提出了一个解决非线性方程系统的新方法,我们将其命名为W4方法。它可以被视为当方法失败时将使用的牛顿-拉夫森-(NR)方法的延伸。事实上,我们的方法不仅可以适用于非单星雅各布基体的普通问题,还可以适用于单子雅各基体的问题,基本上所有先前采用雅各基体反转法的方法都未能解决的单一雅各基体问题。在本条中,我们证明(一)我们的新办法可以使用单值分解法为这些问题确定非单数的迭代图,甚至可以用来界定非单值的互换图,(二)新迭代图中的一系列矢量在一定条件下与正确的解决办法汇合在一起,(三)文献中的标准二维问题,迄今为止没有提出单一方法能够完全解决,而文献中的标准二维问题基本上都是通过我们的新方法解决的。