We study monotone inclusions and monotone variational inequalities, as well as their generalizations to non-monotone settings. We first show that the Extra Anchored Gradient (EAG) algorithm, originally proposed by Yoon and Ryu [2021] for unconstrained convex-concave min-max optimization, can be applied to solve the more general problem of Lipschitz monotone inclusion. More specifically, we prove that the EAG solves Lipschitz monotone inclusion problems with an \emph{accelerated convergence rate} of $O(\frac{1}{T})$, which is \emph{optimal among all first-order methods} [Diakonikolas, 2020, Yoon and Ryu, 2021]. Our second result is a new algorithm, called Extra Anchored Gradient Plus (EAG+), which not only achieves the accelerated $O(\frac{1}{T})$ convergence rate for all monotone inclusion problems, but also exhibits the same accelerated rate for a family of general (non-monotone) inclusion problems that concern negative comonotone operators. As a special case of our second result, EAG+ enjoys the $O(\frac{1}{T})$ convergence rate for solving a non-trivial class of nonconvex-nonconcave min-max optimization problems. Our analyses are based on simple potential function arguments, which might be useful for analysing other accelerated algorithms.


翻译:我们研究单调包容和单调差异性,以及它们对于非单调环境的概括化。 我们首先显示, 由Yoon 和 Luno [2021年] 提出的用于不受约束的 convex 康调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调调, 可以用于解决Lipschitz 单调调调调调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月26日
Arxiv
0+阅读 · 2022年7月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员