Automated deduction lies at the core of Artificial Intelligence (AI), underpinning theorem proving, formal verification, and logical reasoning. Despite decades of progress, reconciling deductive completeness with computational efficiency remains an enduring challenge. Traditional reasoning calculi, grounded in binary resolution, restrict inference to pairwise clause interactions and thereby limit deductive synergy among multiple clauses. The Contradiction Separation Extension (CSE) framework, introduced in 2018, proposed a dynamic multi-clause reasoning theory that redefined logical inference as a process of contradiction separation rather than sequential resolution. While that work established the theoretical foundation, its algorithmic realization remained unformalized and unpublished. This work presents the Extended Triangular Method (ETM), a generalized contradiction-construction algorithm that formalizes and extends the internal mechanisms of contradiction separation. The ETM unifies multiple contradiction-building strategies, including the earlier Standard Extension method, within a triangular geometric framework that supports flexible clause interaction and dynamic synergy. ETM serves as the algorithmic core of several high-performance theorem provers, CSE, CSE-E, CSI-E, and CSI-Enig, whose competitive results in standard first-order benchmarks (TPTP problem sets and CASC 2018-2015) empirically validate the effectiveness and generality of the proposed approach. By bridging theoretical abstraction and operational implementation, ETM advances the contradiction separation paradigm into a generalized, scalable, and practically competitive model for automated reasoning, offering new directions for future research in logical inference and theorem proving.
翻译:暂无翻译