We solve the problem of sparse signal deconvolution in the context of seismic reflectivity inversion, which pertains to high-resolution recovery of the subsurface reflection coefficients. Our formulation employs a nonuniform, non-convex synthesis sparse model comprising a combination of convex and non-convex regularizers, which results in accurate approximations of the l0 pseudo-norm. The resulting iterative algorithm requires the proximal average strategy. When unfolded, the iterations give rise to a learnable proximal average network architecture that can be optimized in a data-driven fashion. We demonstrate the efficacy of the proposed approach through numerical experiments on synthetic 1-D seismic traces and 2-D wedge models in comparison with the benchmark techniques. We also present validations considering the simulated Marmousi2 model as well as real 3-D seismic volume data acquired from the Penobscot 3D survey off the coast of Nova Scotia, Canada.
翻译:在地震反射反射率反向转换的背景下,我们解决了信号分散变异的问题,这与高分辨率恢复次表层反射系数有关。我们的配方采用了一种非统一的、非阴道合成的稀释模型,由混凝土和非阴道调节器组合组成,从而得出10个伪诺气的准确近似值。由此形成的迭代算法要求精确平均战略。在展开后,迭代法产生一种可学习的、以数据驱动方式优化的近似平均网络结构。我们通过合成1D地震轨迹和2D湿度模型与基准技术进行比较,展示了拟议方法的功效。我们还介绍了对模拟Marmousi2模型以及加拿大新斯科舍沿海Penobscot 3D调查获得的实际3D地震量数据的验证。